ТОНКАЯ И ТОЛСТАЯ КИШКА

Основные функции кишки – всасывание нутриентов, жидкости, ионов, а также секреторная, экскреторная, транспортная, эндокринная и иммунная (табл. 9).

Таблица 9 Функции различных отделов кишечника

рН среды, переме-

го и его транспорт,

Клиническая физиология функционально обосновывает деление тонкой кишки на три ее отдела: двенадцатиперстную, тощую и подвздошную кишку.

Двенадцатиперстная кишка – это зона перехода пищевари-

тельного канала от внутриполостного кислого содержимого с рН около 1-4, к внутриполостному слабощелочному содержимому с интенсивной обработкой химуса энзимами кишки и поджелудочной железы, желчными кислотами. В двенадцатиперстной кишке кислый химус из желудка перемешивается с щелочными секретами поджелудочной железы, печени и кишечных желез. В слизистой оболочке двенадцатиперстной кишки, мышечном слое, нервном сплетении стенки кишки происходит интенсивная секреция гормоноподобных нейропептидов и регуляторных пептидов в секреторных клетках, еще недавно объединявшихся в названии «APUD-система». Здесь осуществляется интенсивный гидролиз и всасывание продуктов гидролиза белков, жиров и углеводов, транспорт веществ через мембраны ворсинок и крипт.

Двенадцатиперстная кишка обладает важной функцией координатора моторной деятельности проксимальных и дистальных отделов пищеварительной трубки, экзокринной функции поджелудочной железы, желчеобразования, желчевыделения и, кроме того, осуществляет важную эндокринную функцию. Поэтому функция двенадцатиперстной кишки при внешних неблагоприятных воздействиях, нарушении питания, инфекциях и других сильных раздражениях (нервные импульсы из образований мозга и других частей пищеварительной системы) легко

декомпенсируется. Нарушается тонус кишки, ее пропульсивная деятельность, нарушается работа водителя ритма и межнейрональные связи.

Моторный цикл в межпищеварительный период, так же как и в желудке включает 3 фазы. Наиболее выражена III фаза, продолжающаяся 20-30 мин в 90 минутных циклах. Частота сокращений двенадцатиперстной кишки – 10-12 в минуту.

В тощей кишке осуществляется интенсивный процесс деполимеризации до стадии моноили димеров, благодаря начатому в двенадцатиперстной кишке гидролизу поступивших из желудка питательных веществ. Именно в тощей кишке преобладает перенос веществ от наружной (полостной) поверхности к внутренней, обращенной к базальной мембране, и к кровеносным сосудам (всасывание). Следует учитывать, что в энтероцитах транспорт веществ происходит в обоих направлениях, то есть одновременно протекают процессы всасывания и экскреции.

Подвздошная кишка . Это участок пищеварительного канала с заключительными этапами всасывания некоторых ди- и мономеров гидролизированной пищевой массы, продолжением всасывания солей и воды, участок кругооборота желчных кислот, кобаламина и других веществ. Определенную защитную роль выполняет иммунная система кишки. Она является мощным «заслоном», состоящим из антител и лимфоцитов, от повреждения организма антигенами из полости кишки. Секреторный иммуноген (SIgA) блокирует доступ возможных аллергенных молекул пищи или лекарств, выполняя защитную роль против бактерий, вирусов, токсинов.

Выделяют несколько типов сокращений сегментов кишки. Один из частых вариантов – это сокращение одного сегмента кишки при относительном покое других. Такие сокращения могут повторяться несколько раз подряд, обычно синхронно с сокращениями антрального отдела желудка. Второй вариант – это одновременное сокращение двух участков кишки, отдаленных друг от друга «покоящимся» сегментом. Третий вариант – внезапное сокращение проксимального участка и последующее вовлечение в сокращение всех дистально расположенных сегментов. Напоминает «бегущую волну сокращений».

Существует постоянный ток электрических импульсов, идущих с определенной скоростью (около 10-20 см/с) в проксимально-дистальном направлении. Основной электрический ритм (около 18 в 1 мин) обычно весьма постоянен для каждого сегмента, но в ряде случаев, например при тиреотоксикозе, он повышен. Ритм сокращений сегмента можно изменить, повышая уровень эндогенного серотонина холиномиметиками, пептидами (мотилин, гастрин), простагландинами, секретином, холецистокинином.

Значение моторной функции тонкой кишки важно для эффективной абсорбции нутриентов из ее просвета. Так, например, в эксперименте, при включении в диету грубоволокнистых продуктов ускоряется транзит кишечного содержимого и вследствие этого содержание глюкозы в крови становится в 2 раза меньше, чем при диете без грубых волокон.

Пейсмейкеров электрического ритма кишки несколько. В двенадцатиперстной кишке пейсмейкер, задающий ритм, расположен в 5-6 мм дистальнее пилорического сфинктера (Taylor, Code, 1971). Этот участок двенадцатиперстной кишки, длиной 5-6 см, обладает наибольшей присущей ему внутренней частотой медленных электрических волн. Описан пейсмейкер в сегменте около большого дуоденального сосочка.

Толстая кишка продолжает всасывание нутриентов, поддерживает водный и электролитный баланс, является депо для каловых масс. Именно в дистальном отделе пищеварительного канала присутствует максимальное количество микроорганизмов, среди которых могут быть и патогенные. Толстая кишка не менее сложный орган, чем тонкая, и методически еще труднее для изучения ее функций. Основные трудности заключаются в сложности наблюдений у человека сопряженных процессов моторики, всасывания, секреции, экскреции, иммунологической защиты, соотношений бактериальных ферментов и собственных ферментов кишки, а также многого другого.

В сутки в толстую кишку поступает от 200 до 1500 г полужидкой массы, с которой в кишку доставляется около 60 г углеводов, около 6 г белка и 2 г жира. Всасывание сахаров в толстой кишке не происходит, но анаэробная микрофлора превращает углеводы в летучие жирные кислоты при создании в кишке гипоксии и замедленном перемещении содержимого в дистальном направлении.

В толстой кишке происходит анаэробная ферментизация сахаридов до образования короткоцепочечных жирных кислот. При высокой концентрации сахаридов (100-300 ммоль) в полости кишки изменяется рН и образование жирных кислот. Аминокислоты в толстой кишке не всасываются, они являются источником аммиака, средой для размножения бактерий.

Характер моторики кишки, ее сфинктеры, эффективность транзита жидкости воды через стенку кишки позволяют задерживать в ней остатки химуса, поступившие из тонкой кишки и продукты экскреции до

48 и более часов.

У человека в сутки в кишку из желудка поступает около 1,0 л жидкости (с пищей и соком желез). У здоровых с калом из этого количества выделяется жидкости от 0,5 до 0,1 л. Процессы всасывания и секреция ионов и жидкости наблюдаются в динамическом равновесии, но всасывание преобладает над секрецией. Всасывание преобладает в по

кинувших крипты клетках ворсинок, а секреция в недифференцированных клетках крипт. Регуляция интенсивности и скорости потоков жидкости и ионов направлена на сохранение в организме ионного гомеостазиса. Важное значение в поддержании осмолярности содержимого толстой кишки имеет всасывание аммиака.

Рецепторный аппарат окончаний нейронов стенки кишки воспринимает изменения в рН, ионном, аминокислотном составе среды в полости кишки (сенсорная информация). Сигналы соотносятся с информацией от центральных нервных образований и интегрируются в директивные (исполнительные) с участием нейротканевых регуляторных пептидов и многих, далеко еще не выясненных межорганных взаимоотношений.

Исследование пищеварительной функции

Принцип метода основан на том, что энтерокиназа (энтеропептидаза) активирует панкреатический фермент трипсиноген, переводя его в трипсин. Причём при малых количествах энтерокиназы в активированном секрете поджелудочной железы, полученном при дуоденальном зондировании или при гастродуоденофиброскопии, образуются лишь небольшие количества трипсина, которые протеолитически действуют еще слабо, но их оказывается достаточно для активирования химотрипсиногена, содержащегося в том же препарате. Так как химотриптическая активность преобладает над триптической, то казеин в присутствии солей кальция и фосфора створаживается. При больших количествах энтерокиназы в смеси преобладает собственно триптическая активность и казеин переваривается без створаживания. Количество энтерокиназы определяется путем разведения исследуемого субстрата и выяснения порций, в которых наступило полное переваривание казеина.

В норме количество энтерокиназы в секрете двенадцатиперстной кишки составляет 45-337 ед./мл. Содержание энтерокиназы в кишечном (дуоденальном) соке ниже 45 ед./мл считается пониженным. При слабом повышении количество фермента в соке не превышает 506 ед./мл, при значительном – находится в пределах 507-1000 ед./мл, при резком – превышает 1000 ед./мл.

Исследование щелочной фосфатазы

Щелочная фосфатаза (фосфомоноэстераза) в присутствии ионов магния отщепляет от моноэфиров фосфорной кислоты неорганический фосфат, который необходим для фосфорилирования ряда веществ. В кишечнике этот фермент способствует расщеплению различных моноэфиров фосфорной кислоты, содержащихся, например, в фосфопротеинах, фосфолипидах, в продуктах деполимеризации нуклеиновых кислот

– нуклеотидах. Щелочная фосфатаза расщепляет и фосфорные эфиры моносахаридов (глюкозо-6-фосфат), что необходимо для всасывания последних.

Щелочная фосфатаза не является специфическим кишечным ферментом. Она вырабатывается также печенью, селезенкой, почками, поджелудочной и слюнными железами, мышцами, костями и т. д. Этот фермент присутствует почти во всех тканях организма. Однако кишечник является основным источником щелочной фосфатазы. В слизистой оболочке кишечника человека содержание фермента в 30-40 раз больше, чем в ткани печени и поджелудочной железы и в 100-200 раз больше, чем в слюнных железах, слизистой оболочке желудка, желчи. Щелочная фосфатаза вырабатывается поверхностным слоем слизистой оболочки кишечника. Она принимает активное участие в процессах общего метаболизма, а ее роль в пищеварении лишь косвенная.

Принцип метода . Фенолфталеин-фосфат натрия в щелочной среде бесцветен, щелочная фосфатаза отщепляет от него фосфат, освобождая фенолфталеин, который дает в щелочной среде красное окрашивание. При постоянной рН среды, создаваемой аммиачной буферной смесью, степень окраски раствора будет зависеть от количества фосфатазы. Количество фосфатазы зависит и от разведения исследуемого субстрата.

Щелочную фосфатазу определяют в соке двенадцатиперстной и тонкой кишок. Количество щелочной фосфатазы в соке двенадцатиперстной кишки, составляет 10-30 ед./мл. Содержание щелочной фосфатазы в кишечном соке в условиях юга несколько выше, чем в условиях севера. Активность щелочной фосфатазы сока тощей кишки при исследовании, колеблется в пределах 11-28 ед./мл (в среднем 19,58±8 ед./мл).

Так как щелочная фосфатаза в дуоденальном соке у здоровых может содержаться в небольшом количестве, то для распознавания угнетения ферментовыделительной функции тонкой кишки лучше исследовать сок из более дистальных отделов тонкой кишки, где обычно этого фермента больше.

Увеличение активности щелочной фосфатазы в дуоденальном соке от 46 до 100 ед./мл рассматривается как слабое, от 101 до 337 ед./мл

– как значительное, свыше 337 ед./мл – как резкое.

Энтерокиназа и щелочная фосфатаза относятся к адаптируемым ферментам, т. е. ферментам, приспосабливающимся к изменениям в характере питания. Это нужно учитывать при исследовании кишечных энзимов в клинике. Целесообразно проводить подобные наблюдения при содержании больных на одной из стандартных диет.

Исследование усвоения пищевых веществ

Количество введенных в пищу белков, жиров, углеводов и минеральных солей сопоставляется с их содержанием в кале. Чрезвычайно трудоемкий, требует использования ряда методик для точного определения химического состава принимаемой пищи и выделяемого кала за несколько дней.

Метод взвешивания суточного количества фекалий

Простой метод предназначен для ориентировочной суммарной оценки усвоения пищевых веществ, и следовательно, для косвенного суждения о состоянии процессов всасывания. Суточное выделение кала более 200 г свидетельствует о расстройствах всасывания. Некоторые авторы рекомендуют определять, так называемый, сухой вес кала. Сухой вес кала у здоровых составляет 27,6 + 2,2 г.

Измерение суточного количества кала почти не проводится в современных клиниках из-за технических трудностей (требуется специальная посуда и соответствующее инструктирование больных и персонала).

Исследование калорийности кала

Суточную порцию кала взвешивают, 20 г из нее высушивают при температуре 50-60 градусов до постоянного веса, высушенную массу спрессовывают в таблетки, которые взвешивают, а затем сжигают в калориметрической бомбе и определяют калорийность. Калорийность кала повышается при увеличении количества бактерий в кале. Антибиотики широкого спектра и сульфаниламиды снижают ее.

Методы исследования всасывания жиров

Процесс всасывания жиров, наиболее трудно перевариваемых продуктов, расстраивается чаще и раньше, чем других пищевых веществ.

Жиры всасываются в тонкой кишке. Нарушения всасывания жиров возникает при заболеваниях кишечника, поджелудочной железы, при нарушениях процессов желчеотделения.

Методы, основанные на исследовании крови

Метод «спровоцированной гиперлипидемии»

Больному утром натощак даётся жировая нагрузка, через определенные промежутки времени исследуется кровь на содержание общих липидов или их компонентов. У лиц с нормальным всасыванием жиров в

кишечнике нагрузка вызывает более или менее значительное повышение уровня липидов в крови.

Для нагрузки чаще всего используется сливочное масло, применяются также сливки, оливковое масло и другие жиры, в дозе 1 г на 1 кг веса больного. Нет единства в оценке сроков исследований крови после жировой нагрузки. Максимальный подъем уровня липидов в крови через 4-6 часов.

У здоровых при нагрузке 1 г масла на 1 кг веса тела средний подъем уровня липидов составляет 37,5%. При заболеваниях ЖКТ, сопровождающихся нарушением процессов всасывания подъем уровня липидов после нагрузки значительно меньше или же отсутствует.

Существует также хроматографический метод исследования различных фракций липидов. У исследуемого натощак берется кровь из вены, затем проводится нагрузка сливочным маслом, с повторным забором крови через 4 часа. Из каждой порции сыворотки крови экстрагируются липиды, которые в дальнейшем подвергаются хроматографическому разделению на фосфолипиды, свободный холестерин, неэтерифицированные жирные кислоты, триглицериды, этерифицированный холестерин и свободные углеводороды. Количественное определение производится на спектрофотометре в ультрафиолетовом спектре.

Данный тест используется для изучения гидролиза и всасывания липидов с определением свободных жирных кислот в крови.

Проспарол является 50% эмульсией арахисового масла в воде. Через 2 и 4 часа после введения проспарола получают сыворотку крови и измеряют общее количество этерифицированных жирных кислот.

Тест с липиодолом

Липиодол, помимо масла, содержит 40% йода. Во время процесса ассимиляции йод, который был связан с двойными связями жира, отщепляется и экскретируется с мочой. Абсорбция липиодола рассматривается как показатель всасывания жира. При нарушении всасывания липиодол выделяется с калом, экскреция йода с мочой уменьшается. Проба с липиодолом выявляет лишь тяжелые нарушения кишечной абсорбции.

Тесты с липидемией изменяются не только при расстройствах кишечного всасывания, но и при нарушениях пищеварения, связанных с патологией поджелудочной железы, желчеотделения, что ограничивает их диагностическое значение.

Наряду с исследованием содержания жира в крови после нагрузки проводится также определение некоторых жирорастворимых веществ, всасывающихся вместе с жирами. К таким веществам относят витамин А и каротин.

Тем не менее, тесты предназначенные для оценки всасывания жира, относительно ненадежны, тогда как определение жировой экскреции с калом является простым и надежным. Его достоверность объясняется тем, что 95% жира всасывается и небольшое снижение этого процента гораздо более заметно при определении выделяемого количества, чем при измерении его абсорбции.

Определение экскреции жира с калом

Количественное определение жиров в кале – метод Ван де Камера

Это сравнительно простой и в то же время точный метод количественного определения жиров в кале. Определение количества жиров в кале рекомендуется проводить при нахождении больных на стандартной диете, содержащей 50-100 г жира. Общий жир, жирные кислоты и нейтральный жир, определяемые вначале на 100 г кала обязательно пересчитывают на суточное количество кала. Все данные, полученные этим методом, должны исходить из суточного выделения жиров с калом. Рекомендуется собирать стул в течение трех суток (при запорах 5 суток), проводить последовательно исследования кала из каждой суточной порции и выводить средние показатели за три дня. У здоровых лиц, принимающих жир в физиологических пределах, суточное выделение его с калом не превышает 5 г. Суточное выделение жиров с калом составляющее 5-10 г следует считать умеренной стеатореей, свыше 10 г – выраженной.

Для диагностики скрытых форм патологии всасывания рекомендуется проводить определение жиров в кале после жировых нагрузок.

Трансформированная инфракрасная спектрометрия Фурье

Sallerin и Schroeder предложили метод измерения липидов в фекалиях с помощью инфракрасной спектрометрии.

Испытуемым вводятся меченые жиры и через известные промежутки времени исследуются кровь, моча, кал или выдыхаемый воздух.

Для установления степени резорбции измеряется радиоактивность исследуемого субстрата. Подобные пробы, как и химическое определение жиров в кале, не дают возможности дифференцировать стеаторею различного генеза. Для этого наряду с определением всасывания меченного триолеина исследуется и резорбция меченной олеиновой кислоты (триолеин-эстерглицерина с тремя молекулами олеиновой кислоты). Олеиновая кислота всасывается без предварительного расщепления, расстройства ее абсорбции свидетельствуют о нарушениях всасывательной функции кишечника.

Метятся тестируемые жиры 131 I. Необходимым условием является предварительное блокирование щитовидной железы (раствором Люголя). После введения радиоактивных жиров кровь исследуют через 4, 6, 8 и 24 часа. Радиоактивность мочи измеряют в течение 72 часов в 5 порциях. Проводят также измерение радиоактивности кала и «внешней» радиоактивности больного. Радиоактивность исследуемых субстратов сопоставляют с радиоактивностью введенного вещества и выражают в процентах. При нарушении абсорбции радиоактивность крови оказывается низкой. Увеличение радиоактивности кала свидетельствует о нарушении всасывания.

Радиоактивность крови 131 I – колеблющаяся величина, она отражает не только накопление изотопа в крови, но и его ассимиляцию тканями.

Недостатком фекального теста является необходимость собирания всех испражнений в течение нескольких суток, а также опасность смешивания кала с мочой. Параллельное использование кровяного и фекального тестов повышает их диагностические возможности. Исследование активности мочи менее надежный метод, чем исследование крови.

Существенным достоинством радиоизотопного метода является то, что он может облегчить топическую диагностику абсорбционных расстройств.

В них 14 СО 2 измеряется после приема триглицеридов, меченных

Больной исследуется натощак. Дозу триглицерида-триолеина, меченого 14 С (5 мКю) смешивают с пищевыми добавками. Выдыхаемый 14 СО 2 измеряется ежечасно в течение 6 часов.

Недостатком метода является его высокая стоимость. Дыхательные тесты могут применяться в ситуациях, когда необходима многократная и быстрая оценка абсорбции.

При проведении этих тестов следует учитывать, что на их результаты могут влиять различные условия, замедляющие эвакуацию желудочного содержимого или респираторную элиминацию СО 2 . При обменных заболевания, таких как сахарный диабет и ожирение, замедляется превращение масляных кислот в СО 2 .

Goff предложил двухэтапный метод, при котором дыхательный тест проводится до и после приема панкреатических ферментов. У больных с недостаточностью поджелудочной железы отмечено значительное увеличение максимальной экскреции 14 СО 2 в час после введения ферментов, в то время как у больных с другими причинными факторами мальабсорбции такого повышения не наблюдалось.

Методы исследования всасывания углеводов

Определение абсорбции D-ксилозы

Данный метод является стандартным методом оценки функции тощей кишки. Он заключается в простом измерении содержания в моче и сыворотке крови ксилозы, которая всасывается почти исключительно в тощей кишке.

Тест всасывания D-ксилозы является дешевым и безопасным, не требует много времени, но диагностическая значимость его весьма ограничена. Чувствительность теста при заболеваниях тощей кишки около 83%, специфичность – 86%.

Диагностика дефицита кишечных дисахаридаз

Оценка гликемии после приёма дисахаридаз

Метод основывается на использовании нагрузок дисахаридами и моносахаридами с исследованием глюкозы крови натощак и в течение 2 часов после нагрузки. Для выявления дефицита дисахаридаз проводятся нагрузки с сахарозой, мальтозой, лактозой, глюкозой из расчета 1 г на 1 кг массы тела.

При приеме глюкозы мы получаем представление о состоянии всасывания в тонкой кишке. Прирост концентрации глюкозы крови после нагрузки дисахаридами позволяет судить о ферментативной активности соответствующих кишечных дисахаридаз. Так, например, плоская гликемическая кривая после приёма глюкозы свидетельствует о нарушении всасывания. Если же уплощенная кривая получена после нагрузки дисахаридом, а после приема глюкозы кривая гликемии не изменена, это указывает на снижение процессов гидролиза соответствующего дисахарида, т.е. на нарушение мембранного пищеварения.

Пробы, основанные на исследовании крови, имеют ряд недостатков, т.к. уровень глюкозы в крови определяется многими факторами. Форма гликемической кривой определяется скоростью всасывания и скоростью депонирования глюкозы. Чтобы отдифференцировать все эти механизмы, рекомендуют сравнивать кривые толерантности к глюкозе при введении ее внутрь и внутривенно. Плоская кривая при пероральном варианте пробы и нормальная кривая при внутривенном вливании свидетельствует о нарушении всасывания.

Оценка диарейного синдрома после пероральной нагрузки дисахаридами

При данном методе определяют то минимальное количество дисахарида, принятое натощак, которое вызывает однократное появление жидкого стула в течение 4 часов после его приема. Для выявления сте

пени энзимопатии можно увеличивать или уменьшать дозу дисахарида на 10 г ежедневно, начиная с первоначальной дозы в 50 г.

Водородный дыхательный тест

Измерение концентрации выдыхаемого водорода считается чувствительным методом оценки углеводной мальабсорбции. Его отличие от теста толерантности к углеводам заключается в том, что при этом измеряется количество невсосавшихся углеводов. В этом отношении данный метод является наиболее прямым. Метод используется при определении абсорбции различных сахаров. Кишечная продукция водорода осуществляется практически полностью в толстой кишке и существенно возрастает при приеме незначительного количества углеводов. Содержание водорода в образцах определяется при газовой хроматографии с помощью теплопроводного детектора. Проведение данного теста оказывается безуспешным при бактериальной колонизации толстой кишки, если кишечная флора не способна высвобождать водород в процессе ферментации употребляемого в пробе сахара. Применение слабительных средств, клизм и антибиотиков может сопровождаться ложноотрицательными результатами. Быстрый транзит и снижение рН кала служит причиной снижения чувствительности. Курение может повышать содержание водорода в выдыхаемом воздухе. Тест может использоваться как полезный метод скрининг-диагностики.

Измерение абсорбции меченной С-лактозы

Альтернативой измерению выдыхаемого водорода является определение выделения 14 СО 2 при дыхании после введения меченной 14 С лактозы. Нормальные значения абсорбции лактозы широко варьируют, поэтому в каждой лаборатории, использующей данный метод, необходимо устанавливать собственные границы нормы. Описанный тест является наиболее точным из доступных методов оценки абсорбции лактозы, но требует больших затрат времени и средств. Окончательный диагноз гиполактазии ставят при оценке активности лактазы в биоптатах тощей кишки.

Определение рН кала при мальабсорбции углеводов

рН меньше 6,0 может свидетельствовать о дефиците дисахаридазы (происходит ферментация неабсорбированных углеводов до эфирных жирных кислот).

Методы исследования всасывания и выделения белков

Белки всасываются в кишечнике после расщепления их до аминокислот. В кишечнике в небольших количествах могут всасываться и

промежуточные продукты всасывания белка – пептиды, в частности глицил-глицин.

Всасывание белков в кишечнике исследуется преимущественно с помощью проб, основанных на нагрузке белком или отдельными аминокислотами. Ведущую роль при этом играют радиоизотопные методы.

Данный тест используется для оценки всасывания пептидов. Глицин всасывается в виде ди- и трипептида лучше, чем в свободной форме. Используется двухпросветный зонд, содержащий рентгенонепроницаемые метки по всей своей длине. К нему прикрепляется ртутная капсула. В проксимальной части зонда имеется отверстие, расположенное в просвете в 30 см от конца и предназначенное для введения перфузионной жидкости, а в другом просвете на дистальном конце имеются три отверстия для аспирации. Вечером накануне перфузии больной заглатывает зонд, после чего голодает 14 часов, в течение которых ему разрешается пить воду небольшими глотками. В начале перфузии расположение зонда контролируется рентгенологически, чтобы удостовериться, что его проксимальное отверстие находится за связкой Трейтца. Перфузионная жидкость содержит 100 ммоль/л глицина (раствор становится изотоничным при соответствующей концентрации NaCl). Раствор содержит 0,5 г на 100 мл полиэтиленгликоля 4000 в качестве невсасываемой метки. Перфузионная жидкость вводится со скоростью 12мл/мин с помощью постоянного перфузионного насоса. После 35 минутного периода стабилизации, аспирируются три последовательные 10-минутные пробы кишечного содержимого через дистальные отверстия зонда. Образцы немедленно замораживаются до твердого состояния, и глицин опреде-

ляют методом Giroux and Puech.

Радиоизотопный метод позволяет количественно определить транскишечную потерю белка. Для этого используется меченный 67 Сu церулоплазмин или меченный 51 Сr альбумин.

Перед исследованием в течение 10 дней больной принимает 10 мг сульфата меди (10 мг 3 раза в день) для уменьшения интестинального всасывания меди. После этого больному в/в вводится 100 мг церулоплазмина, меченного 67 Сu. Образцы плазмы берут через 10 мин и 4 часа, а затем ежедневно на протяжении всего исследования. Кроме того, в течение этого периода, собирают суточные образцы мочи и кала. Гастроинтестинальные потери церулоплазмина определяются по его клиренсу.

Меченный 67 Сu церулоплазмин является идеальным препаратом для исследовательской работы, но слишком дорогостоящим и неудобным

для клинического использования ввиду короткого периода полураспада. В клинической практике более приемлем меченный 51 Сr альбумин.

Для этого больному вводится в/в 10-30 мКю меченного альбумина. Кал собирается в течение 4 дней суточными порциями в стеклянные или жестяные банки емкостью 2,2 л. Образцы доводятся до постоянного объема, гомогенизируются и производится гамма-измерение в соответствии со стандартом в специальном контейнере. Результаты выражаются в процентах от инъецированной дозы радиоактивного вещества, выделенного с калом на протяжении 4 дней. Данный тест относительно дешев и прост в выполнении.

Тонкокишечный клиренс а1-антитрипсина

Данный метод является альтернативным (не изотопным) методом определения гастроинтестинальных потерь белка. Измерение клиренса а 1 -антитрипсина имеет явное преимущество: использование эндогенного маркера снижает как стоимость, так и инвазивность исследования. а 1 — антитрипсин определяется с помощью радиальной иммунодиффузии на платах, содержащих моноспецифическую антисыворотку к а 1 — антитрипсину.

Зимогенный активационный тест

Разработан для диагностики врожденного нарушения метаболизма вследствие дефицита энтерокиназы. Тест основан на активации in vitro дуоденального содержимого при добавлении энтерокиназы. Дуоденальное содержимое аспирируется с помощью назогастрального зонда. К 1 мл дуоденальной жидкости добавляют 1 мг очищенной человеческой энтерокиназы и инкубируют при рН 7,5 и 37 о С. Активация трипсиногена, химотрипсиногена и прокарбоксипептидазы измеряется методом Hadorn.

Методы исследования всасывания витаминов

Тест всасывания кобаламина (Шиллинга)

Этот тест используется как для оценки абсорбции в тонкой кишке, так и для определения способности слизистой оболочки желудка продуцировать внутренние факторы. Витамин В 12 , содержащий радиоактивный Со, используется как индикатор. Больной натощак опорожняет мочевой пузырь и затем выпивает жидкость, содержащую 1 мкг витамина В 12 меченного 58 Со. Часом позже больной получает легкий завтрак. Через 2 часа после приема дозы радиоактивного витамина В 12 больному подкожно вводится 1000 мкг цианкобаламина. В течение 24 часов после начала тестирования собирается вся моча для определения в ней содержания 58 Со. Если с мочой выводится нормальное количество радиоактивного витамина В 12 , то дальнейшее исследование не требуется. Если же экскреция ниже нормы, следует проводить повторное тестиро

вание через несколько дней. При этом перорально вводится концентрированный внутренний фактор с целью дифференциации мальабсорбции, вызванной отсутствием внутреннего фактора от мальабсорбции, обусловленной заболеванием или отсутствием кобаламин-всасывающей зоны в терминальном отделе подвзошной кишки. Если используется радиоактивный В 12 в дозе 1 мкг, нормальная его экскреция должна быть 10%. При пернициозной анемии выводится менее 5% дозы, а при мальабсорбции, обусловленной поражением подвздошной кишки, уровень экскреции может колебаться между 0 и 10 %.

Тест Шилинга имеет широкое клиническое применение.

Проба на всасывание фолиевой кислоты

При ряде заболеваний кишечника, в особенности при спру, расстраивается обмен фолиевой кислоты. Метод основан на сравнении мочевой экскреции фолиевой кислоты при пероральном и парентеральном введении этого витамина.

Для исследования вводится парентерально 5 мг фолиевой кислоты, затем собирается моча в течение 24 ч и в ней определяется содержание фолиевой кислоты микробиологическим методом. Через 48 ч ту же дозу фолиевой кислоты назначается внутрь и вновь 24 часа собирается моча. Определяется коэффициент всасывания фолиевой кислоты (ФК) по формуле: (ФК мочи после пероральной нагрузки/ФК мочи после парентеральной нагрузки) ? 100. В норме коэффициент всасывания 75100%.

Методы исследования всасывания солей

При оценке всасывания солей необходимо помнить, что хлориды всасываются в тонкой и толстой кишке, соли кальция – в основном в тонкой кишке, фосфаты – в верхних отделах тонкой кишки.

Исследуется с помощью нагрузки солями кальция или его активными изотопами. Перорально вводится 20 мл 5% раствора СaCl 2 , разведенного в 200 мл воды. Кальций крови исследуется натощак и ежечасно в течение 5 часов после нагрузки. У здоровых лиц уровень кальция повышается на 10% и более.

Исследуется с помощью радиоактивных методик.

Всасывание йодида калия

Так как соединение йодида калия в кишечнике не гидролизуется, после его приема оно довольно быстро появляется в слюне, моче, женском молоке. Так как всасывание йодида калия в значительной мере

происходит в кишечнике, пробу используют для оценки всасывающей функции кишечника. Для этого пациенту натощак дают перорально 0,25 г йодида калия, разведенного в 50 мл воды, которые он запивает 200 мл воды, тщательно прополаскивая в это время рот. Через 2 мин в пробирку собирают слюну и добавляют в неё 2 мл 10% раствора крахмала. Наличие йода в слюне определяется по посинению крахмала в пробирке. Если не наступило посинение, слюну собирают каждые 2 мин до появления посинения. «Йод-калиевое время» у здоровых 3,4 + 0,66 мин. Оно зависит от возраста, состояния кишечной абсорбции, скорости портального кровотока, общей скорости кровообращения, состояния слюнных желез и скорости желудочной эвакуации. Это косвенный ориентировочный тест.

Исследование двигательной функции

При радиоизотопном исследовании больному дают стандартную пищу, меченную коллоидным раствором Тс 99м (технефит), и наблюдают ее пассаж по кишке.

Регистрация электрических потенциалов кишечника непосредственно со слизистой оболочки кишки

Электрические потенциалы со стороны слизистой оболочки кишки, обычно сигмовидной и прямой, регистрируются с помощью дифферентного неполяризующегося электрода, который вводят в кишечник через ректоскоп.

Для записи потенциалов с поверхности тела используется прибор

– электрогастроинтестинограф, представляющий собой усилитель постоянного тока с ограниченной полосой пропускания частот. Установлено, что электрическая активность кишки соответствует механической активности. Биопотенциалы кишки с помощью этого прибора трансформируются в переменный ток и усиливаются до необходимого уровня. Используются различные точки наложения дифферентного электрода для записи потенциалов различных отделов кишки.

Исследование моторики кишки чаще всего проводится баллонным методом или методом открытых катетеров.

Все эти методики дают возможность регистрировать «голодную» периодическую моторную деятельность тонкой кишки, а также изменения моторики при введении фармакологических препаратов или во время действия других раздражителей. Сокращения тонкой кишки регист

studfiles.net

Тонкая кишка и толстая

Толстая кишка начинается от илеоцекального соединения в правой подвздошной области и заканчивается анальным каналом с заднепроходным отверстием.

В толстой кишке выделяют слепую кишку, caecum, ободочную кишку, colon, состоящую из восходящей, поперечной, нисходящей и сигмовидной ободочных кишок, прямую кишку, rectum, и анальный канал, canalis analis. Отделы ободочной кишки П-образно окружают петли тонкой кишки.

Место перехода восходящей ободочной кишки в поперечную выделяют как правый изгиб ободочной кишки, flexura coli dextra, или печеночную кривизну, а место перехода поперечной ободочной кишки в нисходящую — как левый изгиб ободочной кишки, flexura coli sinistra, или селезеночную кривизну.

Топографию прямой кишки рассматривают вместе с топографией органов таза, а анального канала — при описании regio analis промежности.

Поперечная ободочная и сигмовидная ободочная кишки располагаются интраперитонеально и, следовательно, имеют брыжейки. Восходящая и нисходящая ободочные кишки чаще лежат мезоперитонеально, то есть покрыты брюшиной с трех сторон. Задние стенки этих отделов кишки вместо брюшины покрыты позадиобо-дочной фасцией, fascia retrocolica. Ширина этих отделов составляет 2,5—4 см.

В некоторых случаях ободочная кишка имеет общую брыжейку или брыжейку одной из ее половин.

Во время операций на толстой кишке необходимо уметь отличать толстую кишку от тонкой и различать отделы толстой кишки.

Основные отличия тонкой кишки от толстой следующие:

1. Диаметр толстой кишки больше, чем тонкой. В дистальном направлении диаметр толстой кишки уменьшается.

2. Толстая кишка имеет серовато-пепельный оттенок, а тонкая — розоватый, более яркий.

На поперечной ободочной кишке taenia coli, располагающаяся по брыжеечному краю, называется брыжеечной лентой, taenia mesocolica, а располагающаяся по линии прикрепления сальника — сальниковой лентой, taenia omentalis.

5. В отличие от тонкой кишки на поверхности брюшинного покрова толстой кишки имеются сальниковые отростки, appendices omentales (epiploicae). Они представляют собой дупликатуру висцеральной брюшины с большим или меньшим содержанием жировой ткани. Их длина обычно 4—5 см. На поперечной ободочной кишке они образуют один ряд, на других отделах толстой кишки — два ряда. Сальниковых отростков нет на слепой и прямой кишке.

meduniver.com

Тонкая кишка, intestinum tenue (греч. enteron), является самым длинным отделом пищеварительного тракта, располагается между желудком и толстой кишкой. Длина тонкой кишки у трупов мужчин около 7 м, у женщин – около 5,5 м. В тонкой кишке продолжается пищеварение и всасывается большая часть питательных веществ.

Тонкая кишка включает три отдела:

1) двенадцатиперстная кишка;

3) подвздошная кишка.

Двенадцатиперстная кишка, duodenum, длиной 25-30 см, располагается между желудком и тощей кишкой.

Голотопия: двенадцатиперстная кишка проецируется на надчревную и пупочную области.

Скелетотопия: в двенадцатиперстной кишке выделяют четыре части: 1) верхняя, pars superior, начинается от привратника желудка на уровне I поясничного позвонка, идет вправо и назад и образует правый изгиб двенадцатиперстной кишки, flexura duodeni sup.; 2) нисходящая часть, pars descendens, начинается от верхнего изгиба двенадцатиперстной кишки на уровне I поясничного позвонка, идет вниз до уровня III поясничного позвонка, здесь она поворачивает влево и образует нижний изгиб двенадцатиперстной кишки, flexura duodeni inf.; 3) горизонтальная часть, pars horizontalis, идет влево на уровне тела III поясничного позвонка; 4) восходящая часть, pars ascendens, поднимается до уровня I-II поясничного позвонка, где переходит в тощую кишку, здесь образуется двенадцатиперстно-тощий изгиб,flexura duodenojejunalis.

Синтопия: кпереди от двенадцатиперстной кишки лежат печень и корень брыжейки поперечной ободочной кишки, сзади – правая почка, воротная вена и аорта, слева – головка поджелудочной железы и общий желчный проток.

Тощая, jejunum, и подвздошная, ilium, отделы тонкой кишки образуют брыжеечную часть тонкой кишки, intestinum tenue mesenteriale, так как они, в отличие от двенадцатиперстной кишки имеют общую брыжейку.

Голотопия: петли тощей и подвздошной кишок занимают большую часть мезогастрия и гипогастрия. Петли тощей кишки лежат в левой верхней части брюшной полости, а петли подвздошной кишки – в ее правой нижней части.

Скелетотопия: корень брыжейки, radix mesenterii, пересекает позвоночный столб на уровне I поясничного позвонка.

Синтопия: спереди тощей и подвздошной кишок лежит большой сальник, сверху – поперечная ободочная кишка, с боков – восходящая и нисходящая ободочные кишки, внизу петли кишок могут опускаться в малый таз.

Строение стенки тонкой кишки

1. Слизистая оболочка образует круговые складки, plicae circulares. Эти складки являются постоянными образованиями, они не исчезают даже при растяжении кишечной трубки. Подслизистая основа входит в состав круговых складок. На слизистой оболочке имеются кишечные ворсинки, villi intestinales, которые придают слизистой оболочке бархатистый вид. Эти выросты слизистой оболочки длиной 0,2-1,2 мм, функцией ворсинок является пристеночное пищеварение и всасывание питательных веществ. По всей поверхности слизистой оболочки тонкой кишки между ворсинками открываются трубчатые кишечные железы, glandulae intestinales, выделяющие кишечный сок.

В тонкой кишке имеется лимфатический аппарат, необходимый для обезвреживания токсических веществ и микроорганизмов. Он представлен одиночными лимфатическими фолликулами, folliculi lymphatici solitarii, и групповыми фолликулами, folliculi lymphatici aggregati, пейеровы бляшки. Групповые фолликулы овальной формы, их длина около 2-4 см. Они имеются только в подвздошной кишке.

Особенности слизистой оболочки двенадцатиперстной кишки: кроме круговых складок в нисходящей части двенадцатиперстной кишки имеется одна продольная складка, plica longitudinalis duodeni. Эта складка в нижней части образует большой сосок двенадцатиперстной кишки, papilla duodeni major, где открываются одним отверстием общий желчный проток и проток поджелудочной железы.

Особенности слизистой оболочки тощей кишки: круговые складки в тощей кишке высокие и частые. В слизистой оболочке находятся одиночные лимфатические фолликулы.

Особенности слизистой оболочки подвздошной кишки: здесь круговые складки более низкие и расположены реже, чем в тощей кишке. В слизистой оболочке имеются как одиночные, так и групповые лимфатические фолликулы.

2. Мышечная оболочка состоит из двух слоев: наружного продольного и внутреннего циркулярного. Сокращение мышечных волокон носит перистальтический характер, то есть одновременно сокращаются продольные волокна, укорачивая кишку, и циркулярные волокна, суживающие ее. В результате такого сокращения содержимое кишки продвигается в одном направлении – от двенадцатиперстной кишки к дистальному отделу подвздошной кишки.

3. Серозная оболочка. Двенадцатиперстная кишка покрыта брюшиной с одной стороны, лежит экстраперитонеально. Тощая и подвздошная кишки покрыты брюшиной со всех сторон, лежат интраперитонеально.

Возрастные особенности. Тонкая кишка новорожденного имеет длину 1,2-2,8м, к середине периода второго детства ее длина равна длине кишки взрослого человека (около 5-6м). Двенадцатиперстная кишка имеет кольцевидную форму, изгибы формируются позже. У новорожденного расположение петель тощей и подвздошной кишки различное, что связано с положением корня брыжейки и функциональным состоянием кишки. Складки и ворсинки слизистой оболочки развиты слабо, количество кишечных желез увеличивается на первом году жизни. Одиночные и групповые лимфоидные узелки в толще слизистой оболочки кишки у новорожденного уже имеются. Мышечная оболочка развита слабо, особенно ее продольный слой.

Аномалии тонкой кишки

1. Агенезия двенадцатиперстной кишки. Встречается редко и сочетается с агенезией сердца, печени и других органов.

2. Удвоение тонкой кишки. Чаще наблюдается у верхней и нисходящей части двенадцатиперстной кишки.

3. Гипоплазия тонкой кишки. Эта аномалия выражается в уменьшении длины тонной кишки.

4. Атрезии и стенозы.

5. Дивертикулы тонкой кишки. У 1-2% людей встречается подвздошный дивертикул (дивертикул Меккеля). Он образуется в результате неполного заращения желточного стебелька, который у эмбриона соединяет просвет средней кишки с желточным мешком. Подвздошный дивертикул располагается на расстоянии 10-25 см от подвздошно-слепокишечного клапана у детей и 40-80 см у взрослых. Длина дивертикула от 1 до 15 см.

studopedia.ru

Основные различия между тонкой и толстой кишкой

Различия между тонкой и толстой кишкой существенные. Оба органа сформированы из мускулатуры, но они полностью отличаются физиологически и по выполняемым функциям. Тем не менее, они участвуют в пищеварении и взаимосвязаны.

Физиологические различия между тонким и толстым отделом кишечника

Несмотря на то что обе кишки участвуют в пищеварительном процессе и находятся анатомически очень близко друг к другу, все же между ними существуют отличия. Основное отличие – это диаметр органов. Толстая кишка имеет диаметр от 4 до 9 см. У тонкой он составляет всего от 2 до 4 см. Цвет данных органов тоже разный. Тонкий сектор имеет более розоватый оттенок. У толстой кишки превалирует серо-пепельный цвет.

Третьим главным отличием считается то, что тонкая кишка имеет гладкую и продольную мускулатуру. Мышцы расположены по отношению друг к другу равномерно. К тому же, сам тонкий отдел цельный в отличие от толстого отдела, который поделен на 3 сектора, сформированные из отдельных мышечных лент. Данные ленты располагаются вдоль всей кишки. Кроме того, стенки толстого сектора не являются равномерными и гладкими. Этот отсек имеет борозды и выпячивания, образованные мышцами.

Также имеется кольцевая мускулатура, которая очень ярко выражена. Еще одно немаловажное отличие заключается в том, что у стенок толстого органа располагаются сальниковые отростки. Они сформированы из клеток жировой ткани и располагаются в брюшинном отделе. В тонком органе таких наростов не существует.

Стенки толстого кишечника намного толще, чем тонкого. Толщина их составляет от 3,5 до 5,5 мм. Это лентовидные участки мышечных масс. Складки между бороздами и выпячиваниями углубляются внутрь полого органа.

Функциональные отличия между тонким и толстым кишечником

Тонкая кишка отвечает за пищеварительный процесс с момента, когда пищевая масса попадает в желудок, а потом и в сам кишечник. Кроме того, в нем осуществляется всасывание всех полезных микроэлементов, которые необходимы для полноценной работы организма. Толстый отдел не выполняет такой функции. В нем практически не осуществляется пищеварительных процессов в прямом смысле этого слова. Здесь только формируются каловые массы для дальнейшего вывода их из организма. Однако, даже в этом отделе еще всасываются некоторые полезные микроэлементы. Этот орган способен всасывать витамины, но только из жирорастворимой группы.

Как только пищевой ком переходит в тонкий отдел, в нем вырабатывается сок, имеющий щелочную реакцию (в отличие от желудочного сока, в состав которого входит в основном только соляная кислота). Именно он участвует в процессе обработки и дальнейшего расщепления пищевого кома.

В состав пищеварительного сока тонкой кишки входят также различные ферменты, вещества белковой природы и некоторые микроэлементы. В толстом кишечнике происходит заключительный этап полного расщепления пищи. Сюда поступает кашица из перевариваемых продуктов, но в ней уже практически отсутствуют полезные микроэлементы и витамины. Поэтому в толстом кишечнике переваривание не является таким важным для организма. Основная функция этого отдела заключается в образовании твердых каловых масс и дальнейшем выведении остатков пищи из организма.

Пищеварение в толстом и тонком кишечнике

В тонком отделе пищевой ком подвергается расщеплению и под влиянием панкреатического сока и желчи. Именно они поддерживают процесс гидролиза. В этом участке кишечника простые питательные соединения всасываются через стенки органа в лимфатическую жидкость и кровь. Основные пищеварительные соки, которые участвуют в процессе переваривания пищи , – это поджелудочный и кишечный, а также желчь. Они состоят из воды и определенного набора ферментов и аминокислот, которые необходимы не только для переваривания пищи, но и для обеспечения ее продвижения по желудочно-кишечному тракту. Кроме того, они выполняют функцию перемешивания и увлажнения пищевого кома.

Кашица из пищевых остатков продвигается за счет того, что в ней имеются различные полезные микроэлементы, которые влияют на различные участки органа. Они воздействуют на рецепторы, которые располагаются в подотделах кишечного органа. При этом происходит усвоение элементов, а затем сокращение мышц, что обеспечивает дальнейшее продвижение пищи и выведение влаги по определенно заданным критериям. Для того чтобы процессы пищеварения протекали нормально, нужно употреблять достаточное количество жидкости.

Кишечник выполняет не только функцию всасывания полезных веществ и переход их в кровь, но и отвечает за процесс реабсорбации и выведения вредных веществ и остатков пищи. То же касается остатков кровяных элементов, которые больше не нужны организму.

Практически все процессы переваривания зависят от состава микрофлоры в толстом отделе кишечника, т.к. в нем обитают не только полезные, но и различные патогенные бактерии. Ферменты, которые вырабатываются для пищеварения, создают прекрасные условия, для того чтобы кишечная палочка размножалась. Именно этот микроорганизм снижает уровень негативного влияния прочих бактерий. Кроме того, кишечная палочка участвует в переваривании пищевого кома. Если неправильно использовать лекарственные препараты из группы антибиотиков, то состав микрофлоры кишечника изменяется. Антибиотики и неправильное питание могут привести к тому, кишечная палочка не будет полноценно размножаться, а из-за этого будут развиваться колонии бродильных и гнилостных бактерий.

Тонкая и толстая кишка имеют различные стенки. Например, у толстой кишки есть борозды, выпячивания, специальные отростки, тогда как стенки тонкой кишки гладкие. В толстом и тонком отделе кишечника разная микрофлора.

В тонком кишечнике осуществляется всасывание полезных микроэлементов и их переход в кровь.

В толстом отделе кишечника всасываться могут только витамины и витаминоподобные вещества из жирорастворимой группы. В основном сюда попадает только кашица из остатков продуктов, крови и прочих побочных веществ, которые необходимо преобразовать в каловую массу. Оба отдела являются очень важными для процесса переваривания пищи и усвоения полезных веществ.

enterologdoma.ru

Тонкая кишка и толстая

Пища теперь имеет консистенцию протертого супа и уже в значительной степени переварена. Время от времени пилорический сфинктер расслабляется и небольшое количество химуса (так называют содержимое желудка и тонких кишок) выталкивается сокращением желудка в тонкую кишку.

Тонкая и толстая кишки

Тонкая кишка, в которую пища переходит под действием перистальтических волн желудка, представляет собой извилистую трубку около 6,5 м длиной и около 2,5 см в диаметре. Большая часть процесса пищеварения и почти все всасывание происходят в этом органе (только спирт и некоторые яды могут всасываться через стенку желудка). У разных животных длина кишечника различна в соответствии с характером их питания: у растительноядных животных тонкая кишка длинная, у плотоядных — короткая, а у всеядных, в том числе и у человека,— промежуточной длины. Интересным примером этой зависимости может служить лягушка: личинка ее (головастик) травоядна и имеет длинную тонкую кишку, у взрослой же лягушки, питающейся животной пищей, тонкая кишка гораздо короче.

Первый отдел тонкой кишки длиной около 25 см называется двенадцатиперстной кишкой. Эта кишка занимает в брюшной полости фиксированное положение, так как ее удерживают связки, соединяющие ее с печенью и желудком, а также с задней стенкой полости тела. Остальные отделы тонкой кишки (и большая часть толстой кишки) прикреплены только к задней стенке полости тела при помощи тонкой, просвечивающей перепонки (брыжейки) и поэтому обладают значительной свободой перемещения. По этой брыжейке от стенки тела к кишке подходят нервы и кровеносные сосуды.

В двенадцатиперстной кишке к перевариваемой пище примешиваются две чрезвычайно важные жидкости: желчь из печени и панкреатический сок из поджелудочной железы. Кроме того, в стенке кишки находятся миллионы мельчайших кишечных желез, которые выделяют кишечный сок, содержащий ряд ферментов. Эти три сока смешиваются в тонкой кишке и завершают процесс пищеварения, начатый в ротовой полости и в желудке. моторика кишечника. При наличии пищи тонкие кишки находятся в более или менее непрерывном движении, и для этого движения не требуется никаких внешних стимулов, так как оно продолжается и после перерезки всех нервов, идущих к кишечнику. Существует два типа кишечных движений: перистальтические сокращения, продвигающие химус вперед, и маятникообразные движения, просто перемешивающие содержимое кишки . Отдельная перистальтическая волна не распространяется по кишке далеко; пройдя 10—12 см, она обычно затухает, хотя иногда быстрые перистальтические волны проходят значительные расстояния. Перемешивающие движения обусловливаются попеременным сокращением и расслаблением смежных участков кишки, повторяющимся около 10 раз в 1 мин. Эти движения завершают механическое измельчение кишечного содержимого, перемешивают его с различными пищеварительными соками и обеспечивают соприкосновение всех частей содержимого со стенкой кишечника, с тем чтобы переваренная пища могла всосаться в кровь. Таким образом пища в конце концов проходит через всю тонкую кишку и спустя примерно 8 час оказывается в толстой кишке. Материал, поступающий в следующий отдел пищеварительного тракта — толстую кишку, состоит из непереваренных остатков и большого количества воды, входившей в состав принятой пищи и пищеварительных соков.

Печень является органом, жизненно важным для пищеварения, так как она вырабатывает один из пищеварительных соков — желчь. Это самая крупная железа тела: она занимает почти всю верхнюю часть брюшной полости, располагаясь под самой диафрагмой. Большая часть ее лежит на правой стороне тела, но она заходит и на левую сторону, частично прикрывая желудок. Помимо вырабатывания желчи, печень играет важную роль в накоплении и взаимопревращении Сахаров, в синтезе белков плазмы и во Множестве реакций промежуточного обмена. Желчь образуется во всей печени и собирается по разветвленной системе мелких протоков в более крупные протоки, которые проводят ее в желчный пузырь , где желчь сохраняется, пока в ней не возникнет надобность. Здесь из желчи удаляются вода и соли, так что концентрация ее может сильно возрасти. Клетки печени выделяют желчь непрерывно, но в двенадцатиперстную кишку желчь поступает только после приема пищи. Присутствие химуса побуждает слизистую двенадцатиперстной кишки секретировать гормон холецистокинин, который с кровью попадает в печень и стимулирует сокращение мышечной стенки желчного пузыря.

Желчь не содержит пищеварительных ферментов, но доставляет желчные соли, играющие роль эмульгаторов, так что при перемешивающих движениях кишок в химусе образуется тонкая эмульсия или суспензия жировых капелек. Когда жир разбивается на мелкие капельки, то создается большая поверхность для действия липазы. Сами желчные соли тщательно сохраняются организмом: они всасываются в нижних отделах кишечника и переносятся обратно в печень, чтобы снова поступить в желчь. Другой компонент желчи, холестерин, плохо растворяется в воде, и при некоторых обстоятельствах в результате удаления воды его концентрация в желчном пузыре может достигнуть точки осаждения, вследствие чего образуются небольшие твердые шарики, называемые желчными камнями.

Поджелудочная железа массой 60-100г и длинной 15-20 см имеет серовато-красный цвет и расположена заднебрюшинно, на уровне I и II поясничных позвонков.

Поджелудочная железа состоит из двух желёз: экзокринной, вырабатывающей 500-1000 мл панкреатического сока и эндокринной продуцирующей гормоны регулирующие углеводный и жировой обмен. У новорожденных железа очень мала всего 2-3г и относительно подвижна, к 3-4 месяцам её масса удваивается а к 12 – 30г.

Брюшинная полость. Брюшина

Брюшная полость, или полость живота, ограничена вверху диафрагмой, сзади — позвоночником и прилежащими к нему мышцами, спереди и с боков — передней и боковыми стенками живота, внизу — костями и мышцами таза. Изнутри брюшная полость выстлана внутрибрюшной фасцией, образованной переходящими одна в другую фасциями, покрывающими мышцы, участвующими в формировании стенок живота.

Брюшинная полость — это узкая щель, ограниченная брюшиной, покрывающей внутренние органы, расположенные в брюшной полости, и стенки живота. Брюшина представляет собой тонкую, прочную серозную оболочку, образованную пластинкой соединительной ткани, покрытой со стороны брюшинной полости плоскими эпителиальными клетками — мезотелием. У брюшины выделяют пристеночный листок (париетальную брюшину), выстилающий изнутри стенки живота, и внутренностный листок (висцеральную брюшину), покрывающий желудок, печень, селезенку, большую часть тонкой кишки и другие органы.

Брюшина представляет собой непрерывную пластинку, переходящую со стенок живота на внутренние органы и с внутренних органов на стенки живота. Общая поверхность (площадь) брюшины у взрослого человека составляет примерно 1,7 м2. Между листками висцеральной и париетальной брюшины имеется узкая, щелевидная брюшинная полость (полость брюшины), в которой находится небольшое количество серозной жидкости. Эта жидкость, выделяющаяся в брюшинную полость из кровеносных капилляров, смачивает брюшину и облегчает скольжение ее листков друг относительно друга (при перистальтике желудка, кишок, изменениях положения тела). У мужчин брюшинная полость замкнутая, у женщин — через маточные трубы и полость матки сообщается с внешней средой.

www.newreferat.com

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *